Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36851116

RESUMO

Recently, the mRNA platform has become the method of choice in vaccine development to find new ways to fight infectious diseases. However, this approach has shortcomings, namely that mRNA vaccines require special storage conditions, which makes them less accessible. This instability is due to the fact that the five-prime and three-prime ends of the mRNA are a substrate for the ubiquitous exoribonucleases. To address the problem, circular mRNAs have been proposed for transgene delivery as they lack these ends. Notably, circular RNAs do not have a capped five-prime end, which makes it impossible to initiate translation canonically. In this review, we summarize the current knowledge on cap-independent translation initiation methods and discuss which approaches might be most effective in developing vaccines and other biotechnological products based on circular mRNAs.

2.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499174

RESUMO

Almost all people become infected with herpes viruses, including herpes simplex virus type 1 (HSV-1), during their lifetime. Typically, these viruses persist in a latent form that is resistant to all available antiviral medications. Under certain conditions, such as immunosuppression, the latent forms reactivate and cause disease. Moreover, strains of herpesviruses that are drug-resistant have rapidly emerged. Therefore, it is important to develop alternative methods capable of eradicating herpesvirus infections. One promising direction is the development of CRISPR/Cas systems for the therapy of herpesvirus infections. We aimed to design a CRISPR/Cas system for relatively effective long-term and safe control of HSV-1 infection. Here, we show that plasmids encoding the CRISPR/Cas9 system from Streptococcus pyogenes with a single sgRNA targeting the UL30 gene can completely suppress HSV-1 infection of the Vero cell line within 6 days and provide substantial protection within 9 days. For the first time, we show that CRISPR/CasX from Deltaproteobacteria with a single guide RNA against UL30 almost completely suppresses HSV-1 infection of the Vero cell line for 3 days and provides substantial protection for 6 days. We also found that the Cas9 protein without sgRNAs attenuates HSV-1 infection. Our results show that the developed CRISPR/Cas systems are promising therapeutic approaches to control HSV-1 infections.


Assuntos
Herpes Simples , Infecções por Herpesviridae , Herpesviridae , Herpesvirus Humano 1 , Humanos , Sistemas CRISPR-Cas/genética , Herpesvirus Humano 1/genética , Herpes Simples/genética , Infecções por Herpesviridae/genética , Proteína 9 Associada à CRISPR/genética
3.
Vaccines (Basel) ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35632465

RESUMO

The seasonal flu vaccine is, essentially, the only known way to prevent influenza epidemics. However, this approach has limited efficacy due to the high diversity of influenza viruses. Several techniques could potentially overcome this obstacle. A recent first-in-human study of a chimeric hemagglutinin-based universal influenza virus vaccine demonstrated promising results. The coronavirus pandemic triggered the development of fundamentally new vaccine platforms that have demonstrated their effectiveness in humans. Currently, there are around a dozen messenger RNA and self-amplifying RNA flu vaccines in clinical or preclinical trials. However, the applicability of novel approaches for a universal influenza vaccine creation remains unclear. The current review aims to cover the current state of this problem and to suggest future directions for RNA-based flu vaccine development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...